
[Anandharaj, 2(5): May, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1247-1250]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY
A Dynamic and Efficient Resource Management by using Heuristics Algorithm

Anandharaj.V*1, Ms.A.Geetha2
*1,2Bharath University, Chennai, India

anandharajv.ece@gmail.com
Abstract

 Dynamic resource management for a large-scale cloud environment is problematic one. We propose a
gossip protocol that ensures fair resource allocation among sites/applications, dynamically adapts the allocation to
load changes and scales both in the number of physical machines and sites/applications. We present a protocol that
computes an optimal solution without considering memory constraints and prove correctness and convergence
properties. Next, we extend that protocol to provide an efficient heuristic solution for the complete problem, which
includes minimizing the cost for adapting an allocation. The protocol continuously executes on dynamic, local input
and does not require global synchronization, as other proposed gossip protocols do.

Keywords: In this paper, a mechanism is based on gossip protocol, heuristic algorithm.

Introduction
Cloud computing” is a term, which involves
virtualization, distributed computing, networking,
software and web services. A cloud consists of
several elements such as clients, datacenter and
distributed servers. It includes fault tolerance, high
availability, scalability, flexibility, reduced overhead
for users, reduced cost of ownership, on demand
services etc. Cloud computing deliver the computing
as a services whereby share resources, software,
information via Internet which are accessed by the
browser. The business software and data are stored in
server at Remote Location (CLOUD), Cloud
computing provides the kinds of services that are
Infrastructure, Software, platform as a services.
Gossip Protocol is effective protocol for the dynamic
load balance in the distributed system and
continuously execute process input & output process.
Resources allocation policies are computed by
protocols. Our contribution includes outlining
distributed middleware architecture and presenting
one of its key elements: a gossip protocol that (1)
ensures fair resource allocation among
sites/applications, (2) dynamically adapts the
allocation to load changes and (3) scales both in the
number of physical machines and sites/applications.
The protocol continuously executes on dynamic,
local input and does not require global
synchronization, as other proposed gossip protocols

Existing System
Existing System:

Application placement in datacenters is
often modeled through mapping a set of applications

onto a set of machines such that some utility function
is maximized under resource constraints. This
approach has been taken, and solutions from these
works have been incorporated in middleware
products. The problem of resource management is
application placement and load balancing in
processor networks.
Example:

The Service provides some resources to
access for the customer, that the resources are access
often by the client. The concurrent accessing the
capability of bandwidth is to sequencly reduces.
Often accesses the resources mean the client need to
deal with the Service provider for meet the Service
level Objective.

Existing System Algorithm
Distributed Load Balancing.
Definition:

Distributed dynamic load balancing can
introduce immense stress on a system in which each
node needs to interchange status information with
every other node in the system. It is more
advantageous when most of the nodes act
individually with very few interactions with others.
Load balancing in cloud computing systems is really
a challenge now. Always a distributed solution is
required. Because it is not always practically feasible
or cost efficient to maintain one or more idle services
just as to fulfill the required demands. Jobs can’t be
assigned to appropriate servers and clients
individually for efficient load balancing as cloud is a
very complex structure and components are present

[Anandharaj, 2(5): May, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1247-1250]

throughout a wide spread area. Here some
uncertainty is attached while jobs are assigned

Drawbacks
� Application placement is difficult one.
� Cannot handle the heavy loads.
� Resource allocation not properly

maintained.

Conclusion

Using this Distributed Load Balancing
Algorithm is successful one but the hosting the client
application and the User site are slightly unfamiliar to
the user. Distributed system allocation not properly
maintained , in case of heavy not able to balance but
load balancing of cloud environment is really
challenge one but that the algorithm is infeasible.

Future Enhancement

Pursuing this goal, we plan to address the
following issues in future work: (1) Develop a
distributed mechanism that efficiently places new
sites. (A mechanism for removing sites is
straightforward, since P* will reallocate the freed-up
resource.) (2) Extend the middleware design to
become robust to various types of failures. (3) Extend
the middleware design to span several clusters and
several datacenters.

Comparison of Proposed And Existing
System

Existing System Proposed System
Resource allocation
handling is infeasible,
the Existing system
application placement is
have less difficulties ,
the need to invoke the
difficulties

Resource allocation
handling is possible.
Using protocols to
maintain the scalablity
of the hosted
applications of the
authority.

Distributed load
balancing was used
load.
Unsuitable for Heavy
Process .The benefit of
a single, continuous
execution with restarts
is that global
synchronization

Heuristic algorithm.
Suitable for heavy
processes. The benefit
of a sequence
continuous execution no
need restarts is that
global synchronization

Protocols are not used,
the algorithm used in
existing is not have the
performance metric of
protocols.

Gossip protocols are
used. while gossip
protocols for load
balancing in distributed
systems

Less contribution
towards engineering a
resource management
middleware for cloud
environments.

Significant contribution
towards engineering a
resource management
middleware for cloud
environments.

Infeasible to scale the
machine that is
connected in application
current time

Feasible to scale the
machine that is
connected in the
application at current
time.

We focus on application
placement: on which
machine to place a
specific module, and
how to adapt placement
decisions to change in
demand

The cloud service
provider operates the
physical infrastructure.
The cloud hosts sites
belonging to its clients.
Users access sites
through the Internet. A
site is composed of
modules.

Infeasible to adapt
change and load
balancing at runtime.
There problem of
resource management
application placement
and load balancing in
processor networks

Feasible to adapt
changes and load
balancing at runtime.
Feasible of resource
management is
application placement
and load balancing in
processor networks

Proposed System
Abstract
Dynamic resource management for a large-scale
cloud environment is problematic one. We propose a
gossip protocol that ensures fair resource allocation
among sites/applications, dynamically adapts the
allocation to load changes and scales both in the
number of physical machines and sites/applications.
We present a protocol that computes an optimal
solution without considering memory constraints and
prove correctness and convergence properties. Next,
we extend that protocol to provide an efficient
heuristic solution for the complete problem, which
includes minimizing the cost for adapting an
allocation. The protocol continuously executes on
dynamic, local input and does not require global
synchronization, as other proposed gossip protocols
do.

Proposed System

In proposed system, we make a significant
contribution towards engineering a resource
management middleware for cloud environments. We
identify a key component of such a middleware and
present a protocol that can be used to meet our design
goals for resource management. We present a gossip
protocol P* that computes, in a distributed and

[Anandharaj, 2(5): May, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1247-1250]

continuous fashion, a heuristic solution to the
resource allocation problem for a dynamically
changing resource demand. For instance, regarding
fairness, the protocol performs close to an ideal
system for scenarios where the ratio of the total
memory capacity to the total memory demand is
large.

Over All Diagrams

Fig 1.2 Proposed System Diagram

Scope of the Project

Our contribution includes outlining a
distributed middleware architecture and presenting
one of its key elements: a gossip protocol that ensures
fair resource allocation among sites/applications,
dynamically adapts the allocation to load changes and
scales both in the number of physical machines and
sites/applications. These solutions include functions
that compute placements of applications or virtual
machines onto specific physical machines. However,
they do not, in a combined and integrated form, (a)
dynamically adapt existing placements in response to
a change (in demand, capacity, etc.), (b) dynamically
scale resources for an application beyond a single
physical machine, (c) scale beyond some thousand
physical machines (due to their centralized
underlying architecture). These three features in
integrated form characterize our contribution.

The core contribution of the paper is a
gossip protocol, which executes in a middleware
platform and meets the design goals. The protocol
has two innovative characteristics. First, while gossip
protocols for load balancing in distributed systems
have been studied before, (to our knowledge) no
results are available for cases that consider memory
constraints and the cost of reconfiguration, which
makes the resource allocation problem hard to solve.
This paper introduces a resource allocation protocol
that dynamically places site modules (or virtual
machines, respectively) on servers within the cloud,
Each machine runs a machine manager component
that computes the resource allocation policy, which
includes deciding the module instances to run. The
resource allocation policy is computed by a protocol
that runs in the resource manager component. This
component takes as input the estimated demand for
each module that the machine runs. The computed
allocation policy is sent to the module scheduler for
implementation/execution, as well as the site
managers for making decisions on request
forwarding. The overlay manager implements a
distributed algorithm that maintains an overlay graph
of the machines in the cloud and provides each
resource manager with a list of machines to interact.
Example:
Step 1: Gossip protocol has the functionality to scale
the all machine and fair ` resource
allocation and dynamically adapt the load changes.
Step 2: Gossip protocol which executes in a
middleware platform
Step 3: Each machine runs a machine manager
component that computes the resource allocation
policy, which includes deciding the module instances
to run
Step 4: Each site has one site manager. A site
manager handles user requests to a particular site.
Step 5: The demand profiler estimates the resource
demand of each module of the site based on request
statistics, QoS targets. This demand estimate is
forwarded to all machine managers that run instances
of modules belonging to this site
Step 6: Request forwarder sends user requests for
processing to instances of modules belonging to this
site. Request forwarding decisions take into account
the resource allocation policy and constraints such as
session affinity.
Step 7: single site manager cannot handle the
incoming request stream for a site. However, a
scheme for a site manager to scale can be envisioned.
For instance, a layer 4/7 switch could be introduced
that splits the load among several instances of site
managers, whereby each such instance would
function like a site manager associated with a single
site.

[Anandharaj, 2(5): May, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1247-1250]

Proposed System Algorithm Explanation
Heuristic algorithm.
Definition:

Branch-and-bound technique and dynamic
programming are quite effective but their time-
complexity often is too high and unacceptable for
NP-complete tasks. it always finds the nearest local
optimal of low quality. The goal of modern heuristics
is to overcome this disadvantage. Hill-climbing
algorithm is effective.
Step 0: Add domain-specific information to select
the best path along which to continue searching
Step 1:. Define a heuristic function, h(n), that
estimates the “goodness” of a node n. Specifically,
h(n) = estimated cost (or distance) of minimal cost
path from n to a goal state.
Step 2: The heuristic function is an estimate, based
on domain-specific information that is computable
from the current state description, of how close we
are to a goal
Step 3 : Heuristic h(N)
Step 4: Evaluation function:

f(N) =g(N) + h(N);
where:

 g(N) is the cost of the best path found so far
to N
 h(N) is an admissible heuristic
Step 5: Then, best-first search with this evaluation
function is called A* search

Gossip Protocol

Gossip-based protocols have recently gained
notable popularity. Apart from traditional
applications for database replication gossiping
algorithms have been applied to solve numerous
other practical problems including failure detection ,
resource monitoring and data aggregation.

Advantage

• Continuous execution is possible.
• Suitable for heavy processes.
• Resource allocation handling is possible.
• No need for the global synchronization

because the protocol gossip already
capaplity for load balancing

Application
Web-based applications:

Gossip protocol for Dynamic Memory
management in Large cloud Environment. The
protocol is scalable, if any modification for the
particular site means, the site owners arise the on
demand to the site manager, the site manager create
the request dispatcher to the resource manager, this

application is fully based on online brokerage like.
Gossip-based protocols are increasingly popular in
large-scale distributed.... the various styles of gossip,
such as aggregation and neighbor-
set management, ... they each get a fair share of that
node's communication
and memory resources. ... create custom and flexible
live applications or web pages

Conclusion

Gossip protocol that computes, in a
distributed and continuous fashion, a heuristic
solution to the resource allocation problem for a
dynamically changing resource demand. The
component of such a middleware and present a
protocol that can be used to meet our design goals for
resource management: fairness of resource allocation
with respect to sites, efficient adaptation to load
changes and scalability of the middleware layer in
terms of both the number of machines in the cloud as
well as the number of hosted sites/applications.The
results in this paper as building blocks for
engineering a resource management solution for
large-scale clouds.

References

[1] M. Jelasity, A. Montresor, and O. Babaoglu,
“Gossip-based aggregationin large dynamic
networks,” ACM Trans. Computer Syst.,
vol. 23, no. 3, pp. 219–252, 2005.

[2] “T-Man: gossip-based fast overlay topology
construction,” Computer Networks, vol. 53,
no. 13, pp. 2321–2339, 2009.

[3] F. Wuhib, R. Stadler, and M. Spreitzer,
“Gossip-based resource management for
cloud environments,” in 2010 International
Conference on Network and Service
Management.

[4] F. Wuhib, M. Dam, R. Stadler, and A. Clem,
“Robust monitoring of network-wide
aggregates through gossiping,” IEEE Trans.
Network and Service Management, vol. 6,
no. 2, pp. 95–109, June 2009.

